Sources: * https://github.com/mlperf/inference/tree/master/v0.5/classification_and_detection/optional_harness_ck/classification This CK solution demo was prepared by Grigori Fursin and Hervé Guillou. Requred Ubuntu packages: sudo apt update sudo apt install git wget libz-dev curl cmake sudo apt install gcc g++ autoconf autogen libtool For OpenCV: sudo apt install python-opencv sudo apt install libatlas-base-dev sudo apt install libjasper-dev sudo apt install libhdf5-dev sudo apt install libhdf5-serial-dev sudo apt install libqtgui4 sudo apt install libqt4-test
pip3 install cbench or python3 -m pip install cbench or pip install cbench
cb init demo-image-classification-tflite-cpu-mobilenets-rpi4
cb run demo-image-classification-tflite-cpu-mobilenets-rpi4 # Note that the following CK program pipeline will be executed: ck compile program:image-classification-tflite-codereef --cmd_key=default --speed ck run program:image-classification-tflite-codereef --cmd_key=default
pip install numpy pip install opencv-python ck pull repo:ck-mlperf ck install package --tags=lib,python-package,numpy ck install package --tags=lib,python-package,cv2 ck install package:imagenet-2012-val-min ck install package:imagenet-2012-aux ck install package:lib-rtl-xopenme ck install package:dataset-imagenet-preprocessed-using-opencv ck install package --tags=lib,tflite,v1.13.1,vsrc ck install package:model-tf-mlperf-mobilenet-quantized ck compile program:image-classification-tflite-codereef --speed