[ { "Reasonable Miss Rate": 1.76, "code_links": [ { "title": "hasanirtiza/Pedestron", "url": "https://github.com/hasanirtiza/Pedestron" } ], "date": "2020-03-19", "date2": 20200319, "model": "Pedestron", "paper": { "title": "Pedestrian Detection: The Elephant In The Room", "url": "https://cknow.io/lib/8485997d9f4247dd" }, "paper_data_uoa": "8485997d9f4247dd" }, { "Reasonable Miss Rate": 3.46, "code_links": [], "date": "2018-04-30", "date2": 20180430, "model": "FRCNN+FPN-Res50+refined feature map+Crowdhuman", "paper": { "title": "CrowdHuman: A Benchmark for Detecting Human in a Crowd", "url": "https://cknow.io/lib/1bfdee88504a4d4e" }, "paper_data_uoa": "1bfdee88504a4d4e" }, { "Reasonable Miss Rate": 3.8, "code_links": [], "date": "2019-04-05", "date2": 20190405, "model": "CSP + CityPersons dataset", "paper": { "title": "Center and Scale Prediction: A Box-free Approach for Pedestrian and Face Detection", "url": "https://cknow.io/lib/39e164c71b861131" }, "paper_data_uoa": "39e164c71b861131" }, { "Reasonable Miss Rate": 4, "code_links": [ { "title": "bailvwangzi/repulsion_loss_ssd", "url": "https://github.com/bailvwangzi/repulsion_loss_ssd" } ], "date": "2017-11-21", "date2": 20171121, "model": "RepLoss + CityPersons dataset", "paper": { "title": "Repulsion Loss: Detecting Pedestrians in a Crowd", "url": "https://cknow.io/lib/6c58b04490e8a102" }, "paper_data_uoa": "6c58b04490e8a102" }, { "Reasonable Miss Rate": 4.1, "code_links": [], "date": "2018-07-23", "date2": 20180723, "model": "OR-CNN + CityPersons dataset", "paper": { "title": "Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd", "url": "https://cknow.io/lib/7239dd37ee3f49e5" }, "paper_data_uoa": "7239dd37ee3f49e5" }, { "Reasonable Miss Rate": 4.5, "code_links": [], "date": "2019-04-05", "date2": 20190405, "model": "CSP", "paper": { "title": "Center and Scale Prediction: A Box-free Approach for Pedestrian and Face Detection", "url": "https://cknow.io/lib/39e164c71b861131" }, "paper_data_uoa": "39e164c71b861131" }, { "Reasonable Miss Rate": 5, "code_links": [ { "title": "bailvwangzi/repulsion_loss_ssd", "url": "https://github.com/bailvwangzi/repulsion_loss_ssd" } ], "date": "2017-11-21", "date2": 20171121, "model": "RepLoss", "paper": { "title": "Repulsion Loss: Detecting Pedestrians in a Crowd", "url": "https://cknow.io/lib/6c58b04490e8a102" }, "paper_data_uoa": "6c58b04490e8a102" }, { "Reasonable Miss Rate": 5.5, "code_links": [], "date": "2017-05-08", "date2": 20170508, "model": "HyperLearner", "paper": { "title": "What Can Help Pedestrian Detection?", "url": "https://cknow.io/lib/5f898b7b456bf854" }, "paper_data_uoa": "5f898b7b456bf854" }, { "Reasonable Miss Rate": 7.3, "code_links": [], "date": "2016-07-24", "date2": 20160724, "model": "RPN+BF", "paper": { "title": "Is Faster R-CNN Doing Well for Pedestrian Detection?", "url": "https://cknow.io/lib/596486180e694a36" }, "paper_data_uoa": "596486180e694a36" }, { "Reasonable Miss Rate": 7.36, "code_links": [ { "title": "Ricardozzf/sdsrcnn", "url": "https://github.com/Ricardozzf/sdsrcnn" } ], "date": "2017-06-26", "date2": 20170626, "model": "SDS-RCNN", "paper": { "title": "Illuminating Pedestrians via Simultaneous Detection & Segmentation", "url": "https://cknow.io/lib/232232604d8b86b9" }, "paper_data_uoa": "232232604d8b86b9" }, { "Reasonable Miss Rate": 8.18, "code_links": [], "date": "2016-10-11", "date2": 20161011, "model": "F-DNN+SS", "paper": { "title": "Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection", "url": "https://cknow.io/lib/ba3c6844cd5bed4d" }, "paper_data_uoa": "ba3c6844cd5bed4d" }, { "Reasonable Miss Rate": 8.7, "code_links": [], "date": "2016-07-24", "date2": 20160724, "model": "FasterRCNN", "paper": { "title": "Is Faster R-CNN Doing Well for Pedestrian Detection?", "url": "https://cknow.io/lib/596486180e694a36" }, "paper_data_uoa": "596486180e694a36" }, { "Reasonable Miss Rate": 9.68, "code_links": [], "date": "2015-10-28", "date2": 20151028, "model": "SA-FastRCNN", "paper": { "title": "Scale-aware Fast R-CNN for Pedestrian Detection", "url": "https://cknow.io/lib/402587594c8951db" }, "paper_data_uoa": "402587594c8951db" }, { "Reasonable Miss Rate": 9.95, "code_links": [ { "title": "zhaoweicai/mscnn", "url": "https://github.com/zhaoweicai/mscnn" } ], "date": "2016-07-25", "date2": 20160725, "model": "MS-CNN", "paper": { "title": "A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection", "url": "https://cknow.io/lib/8cebd14c2a92283b" }, "paper_data_uoa": "8cebd14c2a92283b" }, { "Reasonable Miss Rate": 11.75, "code_links": [], "date": "2015-07-19", "date2": 20150719, "model": "CompACT-Deep", "paper": { "title": "Learning Complexity-Aware Cascades for Deep Pedestrian Detection", "url": "https://cknow.io/lib/1ae7b4c948c4b35f" }, "paper_data_uoa": "1ae7b4c948c4b35f" }, { "Reasonable Miss Rate": 12.4, "code_links": [ { "title": "iyyun/Part-CNN", "url": "https://github.com/iyyun/Part-CNN" } ], "date": "2018-10-01", "date2": 20181001, "model": "Part-level CNN + saliency and bounding box alignment", "paper": { "title": "Part-Level Convolutional Neural Networks for Pedestrian Detection Using Saliency and Boundary Box Alignment", "url": "https://cknow.io/lib/e47c2a35ee427fcf" }, "paper_data_uoa": "e47c2a35ee427fcf" }, { "Reasonable Miss Rate": 17.1, "code_links": [], "date": "2015-01-23", "date2": 20150123, "model": "Checkerboards+", "paper": { "title": "Filtered Channel Features for Pedestrian Detection", "url": "https://cknow.io/lib/26a3d731f4128b35" }, "paper_data_uoa": "26a3d731f4128b35" }, { "Reasonable Miss Rate": 20.9, "code_links": [], "date": "2014-11-29", "date2": 20141129, "model": "TA-CNN", "paper": { "title": "Pedestrian Detection aided by Deep Learning Semantic Tasks", "url": "https://cknow.io/lib/6927b938921ac62f" }, "paper_data_uoa": "6927b938921ac62f" }, { "Reasonable Miss Rate": 23.3, "code_links": [], "date": "2015-01-23", "date2": 20150123, "model": "AlexNet", "paper": { "title": "Taking a Deeper Look at Pedestrians", "url": "https://cknow.io/lib/48a29ead8c7dc02f" }, "paper_data_uoa": "48a29ead8c7dc02f" }, { "Reasonable Miss Rate": 24.8, "code_links": [], "date": "2014-12-01", "date2": 20141201, "model": "LDCF", "paper": { "title": "Local Decorrelation For Improved Pedestrian Detection", "url": "https://cknow.io/lib/4788e89382e3b813" }, "paper_data_uoa": "4788e89382e3b813" } ]