$ ck pull repo:ck-object-detection
$ ck pull repo:ck-tensorflow
Install from source:
$ ck install package:lib-tensorflow-1.10.1-src-{cpu,cuda}
or from a binary x86_64 package:
$ ck install package:lib-tensorflow-1.10.1-{cpu,cuda}
Or you can choose from different available version of TensorFlow packages:
$ ck install package --tags=lib,tensorflow
$ ck install ck-tensorflow:package:tensorflowmodel-api
Install one or more object detection model package:
$ ck install package --tags=tensorflowmodel,object-detection
0) tensorflowmodel-object-detection-ssd-resnet50-v1-fpn-sbp-640x640-coco Version 20170714 (09baac5e6f931db2)
1) tensorflowmodel-object-detection-ssd-mobilenet-v1-coco Version 20170714 (385831f88e61be8c)
$ ck install package --tags=dataset,object-detection
NB: If you have previously installed the coco dataset, you should probably renew them:
$ ck refresh env:{dataset-env-uoa}
where dataset-env-uoa is one of the env identifiers returned by:
$ ck show env --tags=dataset,coco
$ ck run program:ck-mlperf-tf-object-detection
CK_BATCH_COUNTThe number of batches to be processed.
Default: 1
CK_BATCH_SIZEThe number of images in each batch
Default: 1
CK_ENV_TENSORFLOW_MODEL_FROZEN_GRAPHThe path to the graph to run the inference
Default: set by CK
CK_ENV_TENSORFLOW_MODEL_LABELMAP_FILEFile with the model labelmap file
Default: set by CK
CK_ENV_TENSORFLOW_MODEL_DATASET_TYPEType of the dataset (coco,kitti,...) that is used for the inference
Default: set by CK
CK_ENV_IMAGE_WIDTH and CK_ENV_IMAGE_HEIGHTThe dimensions for the resize of the images, for the preprocessing
Default: set by CK, according to the selected model
CK_ENV_DATASET_IMAGE_DIRPath to the directory with the images
Default: set by CK
CK_ENV_DATASET_TYPEType of dataset used for the program run
Default: set by CK
CK_ENV_DATASET_ANNOTATIONS_PATHPath to the file with the annotations
Default: set by CK
CK_PROFILEmlperf profile to select for the run
Default: default_tf_object_det_zoo
CK_SCENARIOmlperf scenario of the run
Default: Offline
CK_NUM_THREADSNumber of threads used in mlperf
Default: 1
CK_TIMEmlperf parameter time to scan in seconds
Default: 60
CK_QPSmlperf target qps estimate
Default: 100
CK_ACCURACYmlperf variable used to enable the accuracy pass
Default: 'YES'
CK_CACHEmlperf variable used to enable the reuse of preprocessed numpy files. enable ONLY when processing the same model in more than 1 run
Default: 0
CK_QUERIES_SINGLE CK_QUERIES_MULTI CK_QUERIES_OFFLINEmlperf variables with the queries for the different scenarios
Defaults: 1024 24576 24576
CK_MAX_LATENCYmlperf variable with the max latency in the 99pct tile
Default: 0.1