Check the preview of 2nd version of this platform being developed by the open MLCommons taskforce on automation and reproducibility as a free, open-source and technology-agnostic on-prem platform.

Deep Learning for Energy Markets

lib:a94463983403345a (v1.0.0)

Authors: Michael Polson,Vadim Sokolov
ArXiv: 1808.05527
Document:  PDF  DOI 
Abstract URL:

Deep Learning is applied to energy markets to predict extreme loads observed in energy grids. Forecasting energy loads and prices is challenging due to sharp peaks and troughs that arise due to supply and demand fluctuations from intraday system constraints. We propose deep spatio-temporal models and extreme value theory (EVT) to capture theses effects and in particular the tail behavior of load spikes. Deep LSTM architectures with ReLU and $\tanh$ activation functions can model trends and temporal dependencies while EVT captures highly volatile load spikes above a pre-specified threshold. To illustrate our methodology, we use hourly price and demand data from 4719 nodes of the PJM interconnection, and we construct a deep predictor. We show that DL-EVT outperforms traditional Fourier time series methods, both in-and out-of-sample, by capturing the observed nonlinearities in prices. Finally, we conclude with directions for future research.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives


Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!