Check the preview of 2nd version of this platform being developed by the open MLCommons taskforce on automation and reproducibility as a free, open-source and technology-agnostic on-prem platform.

A Deep Recurrent Q Network towards Self-adapting Distributed Microservices architecture

lib:a42d1b2541808300 (v1.0.0)

Authors: Basel Magableh
ArXiv: 1901.04011
Document:  PDF  DOI 
Abstract URL:

One desired aspect of microservices architecture is the ability to self-adapt its own architecture and behaviour in response to changes in the operational environment. To achieve the desired high levels of self-adaptability, this research implements the distributed microservices architectures model, as informed by the MAPE-K model. The proposed architecture employs a multi adaptation agents supported by a centralised controller, that can observe the environment and execute a suitable adaptation action. The adaptation planning is managed by a deep recurrent Q-network (DRQN). It is argued that such integration between DRQN and MDP agents in a MAPE-K model offers distributed microservice architecture with self-adaptability and high levels of availability and scalability. Integrating DRQN into the adaptation process improves the effectiveness of the adaptation and reduces any adaptation risks, including resources over-provisioning and thrashing. The performance of DRQN is evaluated against deep Q-learning and policy gradient algorithms including: i) deep q-network (DQN), ii) dulling deep Q-network (DDQN), iii) a policy gradient neural network (PGNN), and iv) deep deterministic policy gradient (DDPG). The DRQN implementation in this paper manages to outperform the above mentioned algorithms in terms of total reward, less adaptation time, lower error rates, plus faster convergence and training times. We strongly believe that DRQN is more suitable for driving the adaptation in distributed services-oriented architecture and offers better performance than other dynamic decision-making algorithms.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives


Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!